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“A problem for the next century.”
Paul Erdös

Abstract. We focus on the combinatorial analysis of physical mapping
with repeated probes. We present computational complexity results, and
we describe and analyze an algorithmic strategy. We are following the
research avenue proposed by Karp [9] on modeling the problem as a com-
binatorial problem – the Hypergraph Superstring Problem – intimately
related to the Lander-Waterman stochastic model [16]. We show that a
sparse version of the problem is MAXSNP-complete, a result that carries
over to the general case. We show that the minimum Sperner decompo-
sition of a set collection, a problem that is related to the Hypergraph
Superstring problem, is NP-complete. Finally we show that the General-
ized Hypergraph Superstring Problem is also MAXSNP-hard. We present
an efficient algorithm for retrieving the PQ-tree of optimal zero repeti-
tion solutions, that provides a constant approximation to the optimal
solution on sparse data. We provide experimental results on simulated
data.

1 Introduction and Previous Work

Physical mapping using hybridization data involves the construction of genomic
maps based on the information contained in the clone-probe hybridization ma-
trix. The mapping technique has to cope with combinatorial difficulties that are
specific to the hybridization data. There are errors like chimerism, false nega-
tives or false positives, that come from the limitations in experimental accuracy.
Errors introduce specific combinatorial problems whose solutions could provide
good mapping hypotheses. Usually these optimization problems are NP-hard
and various heuristics – based on generalizations of the Consecutive Ones Prop-
erty (C1P) [14] – have been designed to cope with them e.g., [7], [4]. Another
important combinatorial dimension of the mapping problem arises from the the
fact that most probes have multiple occurrences on the genomic region to be
mapped. The literature dealing with algorithms for mapping in the presence of

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 66–77, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Physical Mapping with Repeated Probes 67

repeated probes is quite limited. In this paper we consider the combinatorial
difficulties of physical mapping with repeated probes, we identify some compu-
tational bottlenecks, and we propose algorithms that exhibit various degrees of
measurable success.

The fundamental modeling paper of the area is the paper by Lander and Wa-
terman [5] in which the widely accepted Lander-Waterman model is introduced
and analyzed; see also [13], [3] and [11] for further mathematical and statisti-
cal analyses. According to the Lander-Waterman model, clones are distributed
uniformly along the genomic region, and probes are distributed according to a
Poisson distribution.

The only published algorithmic work focussing on mapping with repeated
probes seems to be [6], although further recent work devoted to the problem is
in progress [10], [18]. In [6] algorithmic strategies are proposed, based on the
Lander-Waterman model by attempting to approximate the likelihood function,
leading to NP-complete optimization problems that are reasonably tractable in
practice. The algorithmic strategy proposed there uses local search 3-opt Lin-
Kernigan type heuristics. No approximation algorithms with a provable guar-
antee were obtained. Based on this work, Karp [9] proposed the problem of
designing approximation algorithms with guaranteed error bounds for the short-
est superstring of a set collection – in our present terminology, the Hypergraph
Superstring Problem. This optimization problem is a combinatorial problem inti-
mately related to the Lander-Waterman model, capturing the search for minimal
explanations of the hybridization data. This combinatorial problem was intro-
duced before (see [19], [21], [8]) and it is notoriously difficult [8], [12]. We are
interested here in the sparse version of the problem, consistent with biologically
relevant data of the Lander-Waterman model.

Kou proves in a paper devoted to information retrieval and file organiza-
tion [20] that a variant of the C1P – modeling multiple storage of records – is
NP-complete. In our terminology the result is that the Hypergraph Superstring
Problem for strict Sperner hypergraphs is NP-complete. In [8], non-tight upper
and lower bounds were obtained for the hypergraph superstring length for the
special case of the hypergraph being the power set of a finite set. [17] gives a
comprehensive overview of the problem.

A clone-probe hybridization matrix is a 0/1 matrix with rows representing
clones, columns representing probes, and a 1 in position (i, j) if and only if
probe j is incident to clone i. Any permutation of the columns of such a matrix
results in the same clone/probe incidence relationship. A collection of clones
has the Consecutive Ones Property (C1P)[14] if there is a permutation of the
columns of the hybridization matrix that allows each row (clone) to be of the form
0 · · · 01 · · · 10 · · ·0 - in a consecutive ones form. The obvious biological relevance
of the C1P is that each clone spans a connected region of the genome. A clone-
probe hybridization matrix containing “perfect” data, i.e., containing no errors
and only unique probes, is a matrix that obeys the C1P. An important property
for a heuristic mapping algorithm is to retrieve the C1P in the absence of errors
[4]. This is one of the properties that our mapping algorithms achieve.



68 Serafim Batzoglou and Sorin Istrail

A feature of the Lander-Waterman model is the Sperner property of a set
collection: no set is included in the other. Indeed, as the number of probes in-
creases, the set of clones of the Lander-Waterman model has the Sperner prop-
erty with high probability. The PQ-tree algorithm [14] that retrieves the C1P
uses a framework that hierarchically decomposes the initial collection of sets into
subcollections that avoid sets included in unions of other sets.

The C1P property of a hybridization matrix ensures that there are no re-
peated probes. The Sperner decomposition of a set collection satisfying the C1P,
and the optimal merging of sets in such a collection to obtain a PQ-tree are
relatively easy computing tasks. Both tasks become computationally intractable
for very sparse instances of data with repeated probes To get insight into the
new combinatorial difficulties, consider the intersection graph IG of a set col-
lection. The vertices are the sets of the collection, and an edge exists between
two vertices when the corresponding sets intersect. In the C1P case, the strict
Sperner collections are sets of disjoint paths (SDP) in IG, while in the Hyper-
graph Superstring Problem they are general graphs. These facts point out to the
importance of strict Sperner collections, as building blocks in the hierarchical
decomposition of the Hypergraph Superstring Problem. As we will see in this
paper, both the Sperner decomposition as well as the optimal merging of the
sets in a strict Sperner collection are MAXSNP- /NP-complete tasks.

In all the above discussion the implicit assumption has been that a probe
never appears more than once in a particular clone. This is a simplifying as-
sumption that is justifiable probailistically by the Lander-Waterman model, as
the Poisson parameter λ governing probe distribution decreases. However, this
property is not necessarily guaranteed in practice. In fact the genome deviates
from the Lander-Waterman model by means of certain sequence patterns that
are repeated and could cause higher than expected probe repetition. An alter-
native model therefore, is to seek the minimal explanation of the hybridization
data in the form of a multiset superstring that allows for possible repetition of
probes in a single clone. We prove that this problem is also MAXSNP-complete.

We present and test the GREEDY-MERGE algorithm that is based on
Sperner decomposition of hypergraphs, with the following provable performance:
(1) it retrieves the PQ-tree of all optimal zero-repetition superstrings; (2) on
strict Sperner hypergraphs it is provably a 1.5625-approximation algorithm;(3)
it provides a 2-approximation for hypergraphs with a restricted Sperner decom-
position. The algorithm has cubic worst-case time complexity, and is much faster
on sparse, biologically relevant data. We test the algorithm on data generated
according to the Lander-Waterman model and found that it approximates the
length of the initial (correct) superstring within a factor of 1.1 in most problems
involving 100-200 clones, 200-400 probes, and 1.5 to 4.9 average probe repetition.
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2 Background

2.1 Physical Mapping

DNA molecules are very long sequences over an alphabet of four letters, or
nucleotides: {A, G, C, T }. The study of a genomic region involves breaking
it into smaller pieces that can be sequenced by present technologies. Physical
Mapping involves reassembling the true arrangement of the pieces on the initial
genomic region, and then sequencing the smallest subset of pieces that cover the
region. The cloning procedure incorporates the pieces of DNA into biological
hosts. Each such copy is a clone. Through self-replication, a large number of
copies of each clone are obtained. The result is a clone library containing many
copies of pieces of the initial genomic region. The reconstruction process is based
on data indicating “overlap” between clones. One method of detecting overlaps is
through the hybridization of short sequences, called probes. Hybridization occurs
when a probe sequence is complementary to a subsequence of a clone. If the
probe has a unique occurrence on the initial genomic region and if two clones are
hybridized by the same probe then they overlap. This assumes ideal experimental
conditions, i.e., no errors. So, unique probes detect overlap. However, in general
probes are complementary to multiple places on the genomic region so detecting
overlap is ambiguous. The information contained in the hybridization data can
be summarized as follows. Let the clones be {C1, . . . , Cn} and the probes be
{P1, . . . , Pm}. Let the matrix H be defined by H [i, j] = 1 if probe Pj hybridizes
to clone Ci, and H [i, j] = 0 otherwise. The problem studied in this paper is
that of using hybridization data given in the matrix H to reassemble the clones
such as to reconstruct the initial genomic region. Let us note that the process
of breaking the DNA into pieces and selecting probes, even in a perfect cloning
and hybridization experimental scenario, might result in loss of information.
Therefore, we may not be able to obtain the exact reconstruction. To well-define
the problem, we aim at obtaining the maximal mapping information consistent
with H .

2.2 The Lander-Waterman Model

We will first define the Lander-Waterman model and then formulate a combina-
torial problem in terms of hypergraphs, an appropriate framework for probe/clone
hybridization data. Then superstrings are introduced in order to search for the
minimal number total repetition of the probes needed to explain the hybridiza-
tion data.

The Lander-Waterman Model

1. A clone is an interval of length 1 contained in the interval [0, N ]. The left end-
points of the clones are independent random variables, uniformly distributed
over [0, N − 1].
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2. Probes 1, . . . ,m are distributed along the interval [0, N] according to in-
dependent Poisson processes of rate λ. That is, a probe occurs at a short
interval of length dx with probability λdx, and disjoint intervals are inde-
pendent.

2.3 The Hypergraph Superstring Problem

Hypergraphs. A hypergraph is a pair H = (X,S), where X is a finite set, and
S = {S1, . . . , Sm} is a family of subsets of X . The sets Si are called hyper-
edges. The following definitions apply to hypergraphs as well to families of sets.
A hypergraph is B-bounded if all of its hyperedges have at most B elements.
A hypergraph is a chain if S = {S1, . . . , Sm} and S1 ⊆ S2 ⊆ · · · ⊆ Sm. A
hypergraph is called antichain, or Sperner, if no Si is included in Sj , for every
i, 6= j, 1 ≤ i, j ≤ m. A hypergraph is called strict Sperner if no hyperedge is
included in the union of the other hyperedges, or equivalently every hyperedge
has a characteristic element.

A Sperner decomposition of a hypergraphH = (X,S) is a decomposition of S
into subfamilies of sets called levels S1, . . . ,St such that: (1) the levels partition
S, i.e. S = S1 ∪ · · ·∪Sm and Si∩Sj = ∅, 1 ≤ i 6= j ≤ t; (2) Si is a strict Sperner
family of sets for every i, 1 ≤ i ≤ t and (3)

⋃St ⊆
⋃S2 ⊆ · · · ⊆ ⋃St.

Consider the clone-probe hybridization matrix of a Lander-Waterman pro-
cess. Let P be the set of probes, and let C = {C1, . . . Cm} be the clones viewed as
sets of probes. Then HLW = (P, C) is the associated hypergraph. According to
the Lander-Waterman model, the arrivals of the left endpoints of the clones are
distributed according to a Poisson process of rate m

N−1 . If |P | is large enough,
with high probability no clone is a subclone of any other clone. Then HLW is a
Sperner hypergraph. The average number of probes per clone is λ|P |.

Multiset Superstrings. A string σ = σ1 · · ·σr, is a multiset superstring of
any subset of U(σ) = {S : 1 ≤ β ≤ η ≤ r : S = {σβ , σβ+1, . . . , ση}}.

Set Superstrings. A string σ is a set superstring (or simply, superstring)
of any subset of V (σ) = {S : ∀β ≤ i < j ≤ η σi 6= σj , S = {σβ , . . . , ση}}

For S ∈ U(σ) or S ∈ V (σ) we define βσ(S), ησ(S) so that S = {σβσ(S), . . . ,
ση(S)}. We say that σ expresses S if S ∈ U(σ) (S ∈ V (σ), also denoted by S ∈ σ.
A multiset (set) superstring σ is non-repeting if no letter in σ occurs more than
once.

Now we are ready to define our main computational problems:

The Hypergraph Set Superstring Problem: Given a Hypergraph H =
(X,S) find a superstring σ = σ1 . . . σn for H of minimal length n.

The Hypergraph Multiset Superstring Problem: Given a Hypergraph
H = (X,S) find a multiset superstring σ = σ1 . . . σn for H of minimal length n.

Remark. Let us remark that the corresponding Graph Superstring Problem,
where the hyperedges have exactly two elements can be solved in time linear
in the number of edges in the graph. The minimum superstring coincides with
the Eulerian path if the graph has such a path. In the general case, it coincides
with the minimum size collection of Eulerian paths that cover all the edges.
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Our problem, the Hypergraph Superstring problem, is therefore a hypergraph
generalization of the Eulerian path problem in graphs.

The Sperner Decomposition of a Hypergraph Problem: Given a Hy-
pergraphH = (X,S) and an integer k > 0, decide whether there exists a Sperner
decomposition into k levels.

3 Computational Complexity of the Hypergraph
Superstring Problems

We show that the hypergraph set superstring, and the hypergraph multiset
superstring problems are MAXSNP-hard. We prove these results with an L-
reduction from TSP(1,2) on bounded degree undirected graphs. The same re-
duction proves both problems to be MAXSNP-hard. We are thus strengthening
Kou’s result by showing that the same problem is MAXSNP-hard, which im-
plies that it is computationally intractable to approximate within better than
a multiplicative constant of optimal. We also show that computing a Sperner
Decomposition of a hypergraph is a hard computational task: it is NP-complete
to decide whether a two-level decomposition exists and more generally, to find
the Sperner Decomposition with a minimal number of levels.

Theorem 1. The Hypergraph Set Superstring Problem and the Hypergraph Mul-
tiset Superstring Problem are MAXSNP-hard even for 5-bounded strict Sperner
hypergraphs.

Proof. We use an L-reduction (intuitively a linear reduction, refer to [1]) from
TSP(1,2) on undirected graphs, on instances where the graph formed by length-
one edges has bounded degree. TSP(1,2) is the traveling salesman problem with
distances 1, 2. That is, given a complete graph G with edges of distance 1 and 2,
find the shortest Hamiltonian path on the graph.1 This problem has been shown
to be MAXSNP-complete even if restricted to instances where the graph formed
by the length-one edges has bounded degree [2].

Let HG = (V,E) be a graph of bounded degree D specifying an instance of
TSP(1,2). That is,HG contains the edges of cost 1 in the corresponding TSP(1,2)
graph G. For every v ∈ V = {1, . . . , n}, with associated edges (v, u1), . . . , (v, ud)
where d ≤ D, define hyperedge Sv = {v, {v, u1}, . . . , {v, ud}}. The hypergraph
H is then (X,S) where X =

⋃
v∈V Sv and S = {Sv|v ∈ V }. Clearly the above

reduction can be performed in logarithmic space. Notice that the resulting set
collection is Sperner because every set Sv has a distinguishing element v ∈ Sv.
Moreover, ∀v : |Sv| ≤ D + 1.

We will show that there is a Hamiltonian path on the graph G of TSP(1,2)
of cost n − 1 + k if and only if there is a (multiset, or set) superstring σ for S
of length m+ k + 1 where m = |E|. Since HG is a graph of degree bounded by
D, m ≤ D × n is linear in n. This will establish that the above reduction is an
L-reduction.
1 That is, the shortest path that visits each node exactly once.
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Say there is a Hamiltonian path of cost n− 1 + k. Since all edges have costs
1 or 2, we know the path uses n − 1 − k edges from H and k edges of cost 2.
Construct σ of cost m+ k+ 1 as follows: σ arranges the sets Sv in the order the
nodes v are arranged on the path. Whenever an edge (u, v) in HG is used on the
path, Su and Sv overlap in one element in σ. Then,

|σ| =
s∑

v=1

|Sv| − (n− 1− k) = m+ k + 1

Conversely, say that σ is a superstring of lengthm+k+1 =
∑n

v=1 |Sv|−(n−k−1).
Construct a path by reading in σ each vertex in the order it appears. Since σ
is shorter than

∑n
v=1 |Sv| by (n − 1 − k) there is a total overlap of (n − 1 − k)

between the sets on the superstring. Since no two sets contain more than one
common element, there are (n − 1 − k) sets that overlap. These sets have a
common edge. This establishes a total of (n− 1− k) edges from HG used in the
path, and hence a path of cost (n− 1 + k).

Theorem 2. The Sperner Decomposition of a Hypergraph Problem is NP-com-
plete. In particular, distinguishing between 2 and 3 levels for the minimum
Sperner decomposition of a hypergraph is NP-complete, even for 3-bounded hy-
pergraphs with size ≤ 1 hyperedge intersections.

Proof. (Sketch). Given a hypergraphH = (X,S) and a partition of S into S1,S2,
we can check efficiently the properties for a Sperner decomposition. Therefore,
the Sperner Decomposition in k levels problem is in NP. We will show NP-
hardness by a reduction from 3SAT.

Let φ = ψ1

∨
. . .

∨
ψm be a 3-CNF formula, with variables x1, . . . , xn. We

construct a hypergraph Sφ. Figure 1 shows the main part of the construction.
Two or three boxes connected by a line network correspond to one hyperedge.

Any “o” contained in a box is a unique element in X . An “o” or “s” contained
only in one box is contained only in one set. Such a set has to be in layer 1,
because the union of layer 1 contains the union of layer 2. A set containing
elements all belonging to sets in layer 1, has to be in a layer 6= 1.

Associate layer 1 with TRUE and layer 2 with FALSE. Then the top part
of Figure 1 containing the three sets labeled TRUE, TRUE, and FALSE, should
be self-explanatory. It follows that any two sets labeled x and x̄ in Figure 1 are
in different layers, in any 2-layer Sperner decomposition.

Assign either all the x-sets, or all the x̄-sets to layer 1 for each variable x,
thereby constructing a truth assignment. Among the x-sets and the x̄-sets, notice
in Figure 1 that there are some containing an s-element. These sets are meant
to correspond to literals in the clauses of φ.

For each variable x with kx occurrences of literal x and k′x occurrences of
literal x̄ construct kx x-sets with an s-element, and k′x x̄-sets with an s-element.
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Fig. 1. Gadget for truth assignment

Finally, three s-elements collapse to one if and only if the corresponding literals
are in the same clause ψi. Therefore there is one s-element for each clause.

Clearly a truth assignment satisfying every clause translates to a 2-level
Sperner decomposition. Conversely, a 2-level Sperner decomposition correctly
assigns truth value: ∀x all the x-sets are in the same level, complement to the
one with the x̄-sets. Moreover, every s-element belongs to three sets one of which
in level 1, thereby satisfying the corresponding clause.

4 Algorithms

We designed a collection of algorithms that incrementally deal with more com-
plex hypergraph structures. They provide a collection of subroutines from which
the SPERNER-GREEDY-MERGE algorithm is constructed. The algorithm
SPERNER-GREEDY-MERGE retrieves the Consecutive Ones Property for a
hybridization matrix, which hints on the strength of the algorithm to deal with all
different kinds of imperfections in physical mapping data. Moreover, SPERNER-
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GREEDY-MERGE has approximation guarantees on sparse, biologically rele-
vant data. Complete details of the algorithms are included in the Appendix sent
to the Program Committee.

The Merge-Sequence-Pair procedure is the basic building block of the al-
gorithms. The algorithm merges pairs of already merged set collections. We
say that a sequence of sets A = [A1, . . . , Ar] is a superstring collection for
a set collection S = {C1, . . . , Cs} if for each i, 1 ≤ i ≤ s there are ji, ki,
1 ≤ ji ≤ ki ≤ n such that Ci =

⋃
ji≤l≤ki

Al, and Al, Am are disjoint for
all ji ≤ l < m ≤ ki. If A and B are superstring collections for clone (set)
collections C1, . . . , CsA and D1, . . . , DsB , then Merge-Sequence-Pair finds the
optimal way of merging the two set sequences A and B into Merge(A,B), a su-
perstring collection for {C1, . . . , CsA , D1, . . . , DsB . Merge-Sequence-Pair requires
that {C1, . . . , CsA , D1, . . . , DsB} is Sperner, and respects the order of the sets in
set sequences A and B. Merge-Sequence-Pair was designed to provide a way to
merge efficiently, in an incremental greedy way, large collections of sets into one
Q-node from which superstrings of the set collections can be obtained.

The SPERNER-GREEDY-MERGE algorihtm uses the Merge-Sequence-Pair
algorithm in a greedy way to construct superstrings. That is, all possible Merge-
Sequence-Pair operations are performed, each time performing the one that
yields the greatest overlap between the two structures that are merged. Each
of the initial structures (superstring collections) consists of one clone from the
data set. The SPERNER-GREEDY-MERGE algorithm assumes that the clone
collection is Sperner. At the first step of the algorithm all the clone intersec-
tion sizes are computed, and among the clone pairs that provide maximum
intersections, one is chosen arbitrarily. This pair (call it C,D) is merged into
a set sequence consisting of three sets, C\D,C ∪ D,D\C. At each step, all
new overlaps between the newly merged set sequence and the existing ones are
computed. The pair to be merged is chosen arbitrarily among the ones with max-
imum overlap. The algorithm runs till there is no possible merge with non-zero
overlap. In the case that there is a non-repeating superstring for the initial set
of clones, SPERNER-GREEDY-MERGE retrieves the PQ-tree of all possible
non-repeating superstrings.

The GREEDY-MERGE is dealing with Sperner levels, accommodating in-
clusions from higher levels of the Sperner decomposition. GREEDY-MERGE re-
trieves the C1P-property for arbitrary hypergraphs. It is a generalization of the
PQ-tree C1P algorithm; it preserves the merges that are necessary for retrieving
the consecutive ones property, performing them in a greedy fashion according
to maximum overlaps. The GREEDY-MERGE algorithm uses the SPERNER-
GREEDY-MERGE algorithm as a subroutine.

The algorithm 2-PHASE-GREEDY is an approximation algorithm that works
well on the strict Sperner hypergraphs. It achieves a 1.5625 worst-case ratio
to the optimal solution. This algorithm is based on the SPERNER-GREEDY-
MERGE algorithm, with some additional restrictions on the order in which the
Merge-Sequence-Pair operations are performed.
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5 Experimental Results

We implemented the SPERNER-GREEDY-MERGE algorithm and ran it on
randomly generated data. The data were generated according to the Lander-
Waterman model, where clones are intervals of length 1 distributed uniformly
along the interval [0, N ].2 The interval [0, N ] was divided in 1000N discrete
positions and probes were distributed along [0, N ] according to a Poisson process,
except that for each clone C, a probe p was allowed to occur only once. Any
occurrences of p in C after the first, were discarded. This distribution is very
similar to a pure Poisson distribution if, as in our case, the mean arriving time
of a probe is much greater than the length of a clone, which is 1 in our case. The
hypergraph that was given as input to SPERNER-GREEDY-MERGE consisted
of all the maximal generated clones.

Table 1 displays some results of running the algorithm while varying N ,
the length of the interval where the clones are distributed; n, the number of
clones used for generating the data, m, the number of probes used for generating
the data; and λ for exponential distribution of the arriving time of probes. p
is the average number of probes after generating the data, ravg is the actual
average number of repetitions of probes, approximately = λN , and rmax is the
average over all generated sequences, maximum number of repetitions of a single
probe. L0 is the average length of the generated sequences, and LGM is the
average length of the sequences or sequence fragments produced by SPERNER-
GREEDY-MERGE. To facilitate presentation, the performance is presented in
percentage of optimal that correspond to the ratio L0/LGM . That is, when we say
that the performance is 95.9% as on the table below in the experiment running
with N = 20 and 300 probes, we mean that SPERNER-GREEDY-MERGE
produces on average a superstring collection of total length 1.0428× [length of
the initial sequence].

N n m p ravg rmax L0 LGM Performance

5 200 200 159.2 1.6 3.9 259.1 292.7 88.7%

10 100 200 118.3 1.4 3.8 165 163.2 100%

10 100 200 145 1.5 3.7 216.5 238.8 90.7%

10 100 200 159 1.7 4.7 268 319.5 84.2%

20 100 200 186.7 2.4 6.8 451.3 453.8 99.5%

20 100 200 192.8 3 7.1 555.3 585.5 94.9%

20 100 200 196.4 3.4 7.8 660.3 699 94.5%

20 100 300 275.5 2.4 6.5 638 665.5 95.9%

30 100 300 293 3.3 8.5 951 913 100%

30 150 300 293 3.3 8.5 969 1041 93.1%

40 200 400 397.5 4.9 12.5 1886.5 1937.5 97.4%

Table 1. Results on data generated according to the Lander-Waterman model.

2 The clone beginnings are distributed along [0, N − 1] with uniform probability.
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As can be seen, the major factor that seems to hurt the performance of the
algorithm is the coverage of the gene, i.e. the average number of clones that cover
each point in the interval [0, N ]. This indicates that a hypergraph that is Sperner
decomposable in a few layers is easier to handle than one that is decomposable
in many layers. This experimental observation is consistent with our intuition
that the Sperner Decomposition problem captures the essence of the difficulty
of computing minimal superstrings. High probe repetition also hurts the perfor-
mance of the algorithm, as expected. The performance of the algorithm increases
with the number of probes. Therefore the algorithm is expected to produce good
results given that a sufficient number of probes is used in the experiment. Finally
the performance seems unaffected as the number of clones increases. Occasion-
ally the algorithm produces a shorter superstring than the initial superstring.
This would correspond to experimental conditions where either too few clones,
or too few probes are used, resulting in under-specified instances of the problem.

6 Future Work

Further research will focus on returning to the Lander-Waterman model to re-
late the worst-case algorithmic approximability performance, to the probabilistic
analysis of the algorithmic performance in the stochastic model. The mapping
difficulties introduced by repeated probes as reported by the genomic centers for
Human Chromosomes, e.g., the Human Y Chromosome, [15] seem well captured
by the combinatorial structure of our algorithms. We are planning a detailed
experimental analysis of the performance of our algorithms on real data.

On the theoretical side, it is an open question to prove a stronger inapprox-
imability result for MIN-HYPERGRAPH-SUPERSTRING, or to demonstrate
a constant approximation algorithm for the general problem.
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